

Written by: R Gregg – Principal Electrical Engineer. Approved: S.Pearson – Head of Building Services Date: 28/03/2019

This document has been generated to ensure consistency of RCD protection on University of Oxford plant and equipment following the release of the 18th Edition wiring regulations.

The 18th Edition states: -

411.3.3 Additional requirements for socket-outlets and for the supply of mobile equipment for use outdoors

In AC systems, additional protection by means of an RCD with a rated residual operating current not exceeding 30 mA shall be provided for:

- (i) socket-outlets with a rated current not exceeding 32A, and
- (ii) mobile equipment with a rated current not exceeding 32A for use outdoors.

An exception to (i) is permitted where, other than for an installation in a dwelling, a documented risk assessment determines that RCD protection is not necessary.

The requirements of Regulation 411.3.3 do not apply to FELV systems according to Regulation 411.7 or reduced low voltage systems according to Regulation 411.8.

NOTE 1: See also Regulations 314.1(iv) and 531.3.2 concerning the avoidance of unwanted tripping.
NOTE 2: See Appendix 2, item 11 in respect of risk assessment.
NOTE 3: A lighting distribution unit complying with BS 5733, luminaire track system, installation coupler, LSC or DCL is not regarded as a socket-outlet for the purposes of this regulation.

411.3.4 Additional requirements for circuits with luminaires

Within domestic (household) premises, additional protection by an RCD with a rated residual operating current not exceeding 30 mA shall be provided for AC final circuits supplying luminaires.

314.1 Division of Installation

Every installation shall be divided into circuits, as necessary, to:

- (i) avoid danger and minimize inconvenience in the event of a fault
- (ii) facilitate safe inspection, testing and maintenance (see also Chapter 46 and Section 537)
- (iii) take account of hazards that may arise from the failure of a single circuit such as a lighting circuit

(iv) reduce the possibility of unwanted tripping of RCDs due to excessive protective conductor (PE) currents not due to a fault

(v) mitigate the effects of electromagnetic disturbances (see also Chapter 44) (vi) prevent the indirect energizing of a circuit intended to be isolated.

Written by: R Gregg – Principal Electrical Engineer. Approved: S.Pearson – Head of Building Services Date: 28/03/2019

531.3.2 Unwanted tripping

Residual current protective devices shall be selected and erected such as to limit the risk of unwanted tripping. The following shall be considered:

- (i) subdivision of circuits with individual associated RCDs. RCDs shall be selected and the circuits subdivided in such a way that any earth leakage current likely to occur during normal operation of the connected load will not cause unwanted tripping of the device. See also Section 314
- (ii) in order to avoid unwanted tripping by protective conductor currents and/or earth leakage currents, the accumulation of such currents downstream of the RCD shall be not more than 30 % of the rated residual operating current
 NOTE 1: This will also allow a better selection of the type of RCDs according to the nature of the circuit or the load.
 NOTE 2: RCDs may operate at any value of residual current in excess of 50 % of the rated residual current. (iii) use of short time-delayed RCDs, provided the applicable requirements of Chapter 41 are met
 NOTE 3: In the case of transient effects, tripping of the RCD may occur by charging of bypass capacitors or by other electromagnetic disturbances.
- (iii) coordination of general type RCDs, selective type RCDs and time-delayed RCDs (CBRs according to BS EN 60947-2) as covered in Section 536

NOTE 4: CBR is a circuit-breaker incorporating residual current protection.

(iv) coordination of RCDs with surge protective devices (SPD) according to Regulation 534.4.7.

Written by: R Gregg – Principal Electrical Engineer. Approved: S.Pearson – Head of Building Services Date: 28/03/2019

University final power circuits.

In regard to regulation 531.3.2 (ii) the maximum amount of 13A twin sockets on circuit is **8 double sockets.** Permission to exceed this must be agreed in writing by the OUES Electrical Engineer.

Below is a list of common installations around the University and will guide the contractor for the appropriate installation. Any Non RCD protected socket will require a documented risk assessment. It is the Departments and contractors responsibility to fill out the risk assessment and submit it to the Estates Electrical Engineer for approval. A template of the risk assessment is attached at the back of this document.

Equipment Type.	Installation method.
Air Conditioning Split DX units.	Local Isolator.
Mechanical Control Panels	Local Isolator.
Internal Mechanical Plant	Non RCD protected Plug and socket –
	Documented Risk Assessment required.
External Mechanical Plant	Local Isolator
Fan Coil units	RCD Socket required.
Water Heaters	RCD Fuse spur required.
Security Equipment / CCTV etc	RCD Socket required.
Disabled Access Equipment	RCD Socket required.
Stair Lifts	RCD Socket required.
Freezers	Non RCD protected Plug and socket –
	Documented Risk Assessment required.
Fire Alarm Panel & Equipment.	Lockable isolator (such as MK K5880WHI) and
	Fusespur on all other FA equipment.
Door Holder open devices	RCD Socket required.
Data Cabinets / Frodo units	Non RCD protected Plug and socket –
	Documented Risk Assessment required.
Fume Cupboards supplies.	Non RCD protected Plug and socket –
	Documented Risk Assessment required.

Written by: R Gregg – Principal Electrical Engineer. Approved: S.Pearson – Head of Building Services Date: 28/03/2019

Risk Assessment for Non Protected RCD Socket.

DOCUMENT REFERENCE NO – OUES/RA/E025

Building Name	
Building Number	
DB reference	
Circuit Ref	
Equipment to be plug into the socket	
Can a non-standard socket be used?	
Environmental conditions	
Reason for Non RCD Protection.	

ESTATES INFORMATION.

THIS DOCUMENT ONCE COMPLETED SHALL BE SAVED TO THE O DRIVE - EXAMPLE BELOW.

O:\Property Management\174 - Malthouse\Building Services\Electrical\NON RCD SOCKETS\DB 001

Written By: ______ DATE_____ DATE_____

Reviewed By:	DATE